## **Vegetable Crop Update**

A newsletter for commercial potato and vegetable growers prepared by the University of Wisconsin-Madison vegetable research and extension specialists

Extension UNIVERSITY OF WISCONSIN-MADISON

No. 19 – October 1, 2023

## In This Issue:

- Potato and tomato early blight and late blight disease updates
- Cucurbit downy mildew updates

## Calendar of Events:

**November 28-30, 2023** – Midwest Food Producers Assoc. Processing Crops Conference, Kalahari Convention Center

**January 9-11, 2024** – Wisconsin Agribusiness Classic, Alliant Energy Center, Madison, WI **January 21-23, 2024** – Wisconsin Fresh Fruit and Vegetable Growers Conference, Kalahari Resort, Wisconsin Dells, WI

**January 25-26, 2024** – Organic Vegetable Production Conference, UW Madison Division of Extension (Online)

**February 2-3, 2024** – Organic Vegetable Production Conference, UW Madison Division of Extension, Alliant Energy Center, Madison, WI

**February 6-8, 2024** – UW-Madison Div. of Extension & WPVGA Grower Education Conference & Industry Show, Stevens Point, WI

Amanda Gevens, Chair, Professor & Extension Vegetable Pathologist, UW-Madison, Dept. of Plant Pathology, 608-575-3029, Email: <a href="mailto:gevens@wisc.edu">gevens@wisc.edu</a>, Lab Website: <a href="https://vegpath.plantpath.wisc.edu/">https://vegpath.plantpath.wisc.edu/</a>

Please note that this will be the last newsletter issued for our 2023 growing season production updates. We will periodically share a newsletter with information and resources. Have a safe harvest season!

Late blight of potato/tomato. Late blight was not identified in tomato or potato plantings in Wisconsin during the 2023 field production season. This is the second year with this status. Certainly, the dry and hot weather limits conditions favorable to late blight, but we can't underestimate good prevention of disease through appropriately timed fungicides. All locations are at or have surpassed the threshold of DSV 18 over this past week. Prevention of late blight should still be considered even this late in the season since airborne sporangia can move into fields (despite senescing foliage) and make their way down to tubers in the soil to create tuber infection. The usablight.org website (<a href="https://usablight.org/map/">https://usablight.org/map/</a>) indicated limit reports of late blight over this past 2023 growing season. So far, all characterizations of the late blight pathogen identified in North America this growing season have resulted in the US-23 type. Fungicides for the management of late blight in tomato and potato crops are provided: <a href="https://learningstore.extension.wisc.edu/products/commercial-vegetable-production-in-wisconsin">https://learningstore.extension.wisc.edu/products/commercial-vegetable-production-in-wisconsin</a>. A specific list of fungicides for potato late blight in Wisconsin was also offered in a special report shared via email on July 28. <a href="https://vegpath.plantpath.wisc.edu/wp-content/uploads/sites/210/2023/08/2023-Potato-Late-Blight-Fungicides.pdf">https://vegpath.plantpath.wisc.edu/wp-content/uploads/sites/210/2023/08/2023-Potato-Late-Blight-Fungicides.pdf</a>

Current P-Day (Early Blight) and Disease Severity Value (Late Blight) Accumulations. Many thanks to Ben Bradford, UW-Entomology; Stephen Jordan, UW-Plant Pathology; and our grower collaborators for supporting this effort. A Potato Physiological Day or P-Day value of ≥300 indicates the threshold for early blight risk and triggers preventative fungicide application. A Disease Severity Value or DSV of ≥18 indicates the threshold for late blight risk and triggers preventative fungicide application. Red text in table indicates threshold has been met or surpassed. Weather data used in these calculations is from weather stations that are placed in potato fields in each of the four locations, as available. Data from: <a href="https://agweather.cals.wisc.edu/vdifn">https://agweather.cals.wisc.edu/vdifn</a> will be used to supplement as needed for missing data points and for additional locations (indicated with \*). Data are available in graphical and raw formats for multiple locations at: <a href="https://vegpath.plantpath.wisc.edu/dsv/">https://vegpath.plantpath.wisc.edu/dsv/</a>.

|                    | Planting Date |        | 50%<br>Emergence | Disease Severity Values (DSVs) | Potato Physiological Days<br>(P-Days) |
|--------------------|---------------|--------|------------------|--------------------------------|---------------------------------------|
|                    |               |        | Date             | (DS (S)                        | (1-Days)                              |
|                    |               |        | Date             | through 9/30/2023              | through 9/30/2023                     |
| Spring             | Early         | Apr 3  | May 9            | 25                             | 1138                                  |
| Green*             | Mid           | Apr 17 | May 12           | 25                             | 1117                                  |
|                    | Late          | May 10 | May 23           | 25                             | 1048                                  |
| Arlington*         | Early         | Apr 5  | May 10           | 20                             | 1149                                  |
| _                  | Mid           | Apr 20 | May 15           | 20                             | 1111                                  |
|                    | Late          | May12  | May 25           | 20                             | 1051                                  |
| <b>Grand Marsh</b> | Early         | Apr 5  | May 10           | 25                             | 1091                                  |
|                    | Mid           | Apr 20 | May 15           | 25                             | 1057                                  |
|                    | Late          | May 12 | May 25           | 25                             | 1005                                  |
| Hancock            | Early         | Apr 10 | May 17           | 31                             | 1057                                  |
|                    | Mid           | Apr 22 | May 19           | 31                             | 1051                                  |
|                    | Late          | May 14 | May 28           | 31                             | 1012                                  |
| Plover             | Early         | Apr 14 | May 19           | 35                             | 1043                                  |
|                    | Mid           | Apr 24 | May 20           | 35                             | 1040                                  |
|                    | Late          | May 19 | May 29           | 35                             | 989                                   |
| Antigo             | Early         | May 1  | May 28           | 40                             | 927                                   |
|                    | Mid           | May 15 | June 3           | 40                             | 890                                   |
|                    | Late          | June 7 | June 23          | 40                             | 747                                   |
| Rhinelander*       | Early         | May 7  | June 1           | 18                             | 897                                   |
|                    | Mid           | May 18 | June 5           | 18                             | 862                                   |
|                    | Late          | June 9 | June 24          | 18                             | 739                                   |

In addition to the potato field weather stations, we have the UW Vegetable Disease and Insect Forecasting Network tool to explore P-Days and DSVs across the state (<a href="https://agweather.cals.wisc.edu/vdifn">https://agweather.cals.wisc.edu/vdifn</a>). This tool utilizes NOAA weather data. In using this tool, be sure to enter your model selections and parameters, then hit the blue submit button at the bottom of the parameter boxes. Once thresholds are met for risk of early blight and/or late blight, fungicides are recommended for optimum disease control. Fungicide details can be found in the 2023 Commercial Vegetable Production in Wisconsin Guide, Extension Document A3422. <a href="https://learningstore.extension.wisc.edu/products/commercial-vegetable-production-in-wisconsin">https://learningstore.extension.wisc.edu/products/commercial-vegetable-production-in-wisconsin</a>

Cucurbit Downy Mildew. The Cucurbit Downy Mildew forecasting webpage (https://cdm.ipmpipe.org/) is not forecasting the movement of the pathogen, but is offering reporting of findings of cucurbit downy mildew from the US (map below shows new reports this past week in MD, KY, and SC). To date, there have been no reports of cucurbit downy mildew here in WI. Depending upon the status of the crop, preventative treatment of cucumber and melon crops (clade 2 downy mildew) may have some justification.https://vegpath.plantpath.wisc.edu/2023/08/28/update-15-aug-27-2023/

